

TECHNICAL DATA SHEET

1-403-362-3725 24 Hr

OCP 1175

E-Mail tclgreen@telusplanet.net

General Description - *OCP* 1175 is a patent-pending high-capacity non-hazardous granular media. It is comprised of a high porosity mixed iron-oxide tightly bound on a stable hydroscopic inert base. The media is used selective removal of H₂S and light mercaptans in natural gas and other gasses. This high-capacity media works without oxygen; however a minimum molar ratio, O₂ to H₂S, of 1 or more will increase reaction speed and improve sulfur removal capacity. This unique formulation allows reliable performance in less than "water-saturated gas" without need for added water.

Product Features Product Uses	 High capacity sulfur removal, up to 14% by weight for anaerobic (11 lbs sulfur per cu.ft)., up to 28% by weight with ≥ 5:1 - O2:H2S ratio Cost-effective reliable low level hydrogen sulfide removal with starting outlet levels at non-detect and slowly rising to the desired maximum outlet concentration Forms basic sulfur and stable iron sulfides Can be used in any "iron sponge" or solid sweetening media type tower High particle strength and low dust content Low and stable pressure drop, beginning to end Presence of liquid water or hydrocarbons does not interfere Removal of H2S and light mercaptans from gas streams
Properties	Physical Properties (Typical) Chemical Analysis Form: Random shaped orange/brown/black granules Proprietary Formed Iron Size: 4 x 14 Mesh Proprietary Formed Iron pH: 6.5 – 7.3 Solubility in water: non Flammability: non Surface Area: 100-135 m²/gr Pressure Drop: psi = 0.03*ft/min(EB)*feet of media Recommended Temperature of Operation: 32°F to 150°F, 0°C to 65°C Recommended Temperature of Operation: 32°F to 150°F, 0°C to 65°C Recommended Water Content of the Gas: 85% to 100% R.H. Some water or liquid hydrocarbon condensation in the media is not a problem. Beginning Outlet Concentration at Start: Non-detect H2S End-of Life Outlet Concentration by Design: 0.1 ppm H2S or greater Estimated Contact Time Required for Minimum Design – Single Vessel: Without Oxygen - Minutes = 2.96 x (30/°C) x log (average or peak inlet ppm / maximum outlet ppm desired) With 5:1 or more O2:H2S Ratio – Minutes = 1.35 x (30/°C) x log (average or peak inlet ppm / maximum outlet ppm desired)
Shipping & Handling	 Non-hazardous Avoid breathing excessive dust. Do not take internally. Please refer to Material Safety Data Sheet for further information. OCP 1175 is available in 1000, 2000 and 2500 lb. bulk bags.
Tyler Chemicals Ltd Box 2176 Brooks, Ab T1R 1C 8	

1-403-362-5299 Fax